
Optimal Limited Contingency Planning

Nicolas Meuleau∗ and David E. Smith
NASA Ames Research Center

Mail Stop 269-3
Moffet Field, CA 94035-1000

{nmeuleau, de2smith}@email.arc.nasa.gov

Abstract

For a given problem, the optimal Markov policy
over a finite horizon is a conditional plan contain-
ing a potentially large number of branches. How-
ever, there are applications where it is desirable
to strictly limit the number of decision points and
branches in a plan. This raises the question of
how one goes about finding optimal plans con-
taining only a limited number of branches. In
this paper, we present an any-time algorithm for
optimalk-contingency planning. It is the first op-
timal algorithm for limited contingency planning
that is not an explicit enumeration of possible
contingent plans. By modelling the problem as
a partially observable Markov decision process,
it implements the Bellman optimality principle
and prunes the solution space. We present ex-
perimental results of applying this algorithm to
some simple test cases.

1 INTRODUCTION

Markov decision processes(MDPs) provide a powerful the-
oretical framework for planning under uncertainty with
probabilities, costs and rewards [15]. In this framework,
the optimal solution to a problem is an optimalpolicy, that
is, a rule specifying the action to perform for each situa-
tion we could possibly be in. For a finite planning horizon,
this policy represents aconditionalor contingentplan with
a branch for each possible situation that might be encoun-
tered during execution. Therefore, the optimal contingent
plan may be large and complex, since it may contain a large
number of branches.

There are applications where this size and complexity is a
significant drawback. Consider, for example, the problem
of constructing daily plans for a Mars rover. There is a great
deal of uncertainty in this domain, concerning such things

∗QSS Group Inc.

as time, energy usage, data storage available, and position
(see [5] for a more detailed description). However, there
are some compelling reasons for keeping the plans simple:

• There is a need for cognitive simplicity – plans must
be simple enough that they can be displayed easily,
and understood and modified by both Earth scientists
and mission operations personnel.

• Plans must undergo very detailed analysis and simu-
lation using complex models of illumination, energy
consumption, thermal characteristics, kinematics, and
terrain. There is limited time to do this analysis, so
plans must be kept structurally simple in order to ex-
pedite this process.

• There is limited communication bandwidth and lim-
ited storage on board the rover, so there is an advan-
tage to keeping plans small.

As a result, we are interested inlimited contingency plan-
ning. More precisely, we would like to be able to compute
the optimalk-contingency plan for a problem – that is, the
optimal plan containingk or fewer contingency branches.

In general, the problem of contingency planning is known
to be quite hard [11], andk-contingency planning is no
exception. Ifk = ∞, k-contingency planning reduces to
finding the optimal policy. Ifk = 0, k-contingency plan-
ning reduces to stochasticconformantplanning, where we
must find the best unconditional sequence of actions [9].
One can argue that limited contingency planning is harder
than both conformant planning and searching for the opti-
mal policy. First, the search space of conformant planing
(that is, the set of all sequences of actions) is exponentially
smaller than the search space ofk-contingency planning
(the set of allk-contingency plans). Second, although the
set of all policies is usually larger than the set of allk-
contingency plans, dynamic programming (DP) techniques
are able to significantly prune the search for an optimal
policy by using Bellman’s optimality principle. However,
to our knowledge, there is no previous algorithm that is

able to implement Bellman’s optimality principle for lim-
ited contingency planning. The problem is that the classi-
cal Markov state is insufficient: knowing the best limited
contingency plan from timet + 1 to the horizon for each
state we could be in at timet + 1 does not help to find the
best plan from timet to the horizon. In fact, the action
performed at timet may bring us no certainty about the
state at timet + 1, and the best plan for an uncertain ini-
tial state may be different from the best plan in each state.
However, the belief-state borrowed from partially observ-
able Markov decision process (POMDP) theory [6, 10] , that
is, a probability distribution on the original state, is a suf-
ficient statistic to allow aDP approach to the problem of
limited contingency planning. This is the basic principle of
the algorithm presented in this paper.

Conformant planning is well known to be equivalent to the
problem of planning in an unobservable environment: lim-
iting oneself to unconditional plans is equivalent to dis-
carding the observation of the current state that is avail-
able at each time step. The first algorithm to exploit this
fact performed heuristic search through the belief space
[1, 4]. Instead of using Bellman’s optimality principle,
these techniques (when they tackle theoptimal planning
problem) rely on admissible heuristics to prune the search
space [4]. Recently, Hyafil and Bacchus used the best so-
lution techniques forPOMDPs to solve stochastic confor-
mant planning problems [9]. In this approach, conformant
planning is modelled as a fullynon-observable Markov de-
cision process(NOMDP), which is a particular case of a
POMDP. As Hyafil and Bacchus point out, the drawback
of this approach is that it requires computing optimal so-
lutions for states that may be unreachable, but its strength
is that it prunes the search space by using Bellman’s op-
timality principle. For several test bed problems, Hyafil
and Bacchus show that this approach outperforms a CSP
algorithm that is able to do some reachability analysis but
cannot prune the search space. Moreover, the superiority
of the POMDP approach becomes apparent as the size of
the problems grows.

In this paper, we presentoptimal k-contingency planning
(OKP), an incremental algorithm for optimal limited con-
tingency planning. As in [9], we use aPOMDP framework
to model the problem, which allows using Bellman’s op-
timality principle to speed up the search. The difference
is that we must encode the number of branches allowed in
the state description of thePOMDP. In effect, this amounts
to keeping multiple copies of thePOMDPcorresponding to
different numbers of branches allowed. When we choose to
make an observation in onePOMDP, we drop into aPOMDP

with fewer branches allowed. When all the branches are
used up, we end up in thePOMDP for the conformant plan-
ning problem as used by Hyafil and Bacchus.

We start by specifying the notion of contingent plan used
throughout the paper. In Section 2, we first show how

Hyafil and Bacchus encoded conformant planning as a
POMDP. We then move on to1-contingency planning, fol-
lowed bybalancedk-contingency planning. In Section 3
we further generalize this to arbitraryk-contingency plan-
ning. In Section 4 we present experimental results compar-
ing OKP against a brute force search technique for finding
k-contingency plans. Finally, we review related work and
conclude.

1.1 CONTINGENT PLANS

This paper addresses a series of variants of the limited con-
tingency planning problem. In general, we are looking for
optimal tree-shaped plans, the simplest form being confor-
mant plans, which are simple sequences of actions without
branches. This choice may seem a little odd since there
are more compact types of plans or policies, such as finite
state controllers. However, there are reasons to prefer tree-
shaped plans in some application domains. For instance,
in the Mars rover domain, resources are monotonically de-
creasing along each possible trajectory, so that a state is
never visited twice. Moreover, the action the rover executes
must depend on the resource available. Therefore,NASA

requires that plans have finite horizon and do not contain
loops.

Optimalk-contingency planningis the problem of finding
an optimal tree-shaped plan with (at most)k branch points.
We consider three variants of this problem:

general k-contingency planning: in the most general
case, we are looking for the best plan with at most
k branch points overall;

linear k-contingency planning: we try to find the best
plan with at mostk branch points, all of them on one
trajectory through the plan. That is, the plan structure
is a main line of actions with simple branches attached
to it, and no branches on the branches.

balancedk-contingency planning: we are looking for
the best plan with at mostk branch points in each pos-
sible trajectory through the plan. That is, the largest
possible plan structure is a balanced tree withk branch
points in each path from the root (initial time) to a leaf
(planning horizon). So, there are actually more thank
branch points over the whole plan.

Although the balanced plan structure is a bit contrived, it
is useful for presenting our algorithm sinceOKP takes its
simplest form in this case.

2 OPTIMAL BALANCED
k-CONTINGENCY PLANNING

Our formalism uses severalPOMDPs defined over different
state, action and observation spaces, so it is important to

understand the role of eachPOMDP. The firstPOMDP we
introduce,M , represents the planning problem in the clas-
sical sense. In this paper, our goal is to find optimal contin-
gent plans for the processM . M can be a fully observable
MDP, which we see as a particular case of aPOMDP. In
our framework, it means that we can observe exactly the
current state each time we decide to branch. In the general
case (whenM is not anMDP), we have only noisy observa-
tions for branching decisions. Later, we introduce several
otherPOMDPs, {Mk : k ≥ 0}, obtained by transforming
the original processM in such a way that an optimal so-
lution to Mk is an optimalk-contingency plan forM . So,
eachMk representsthe problem ofk-contingency planning
in M .

The planning problem for which we want to find opti-
mal contingent plans is modelled as thePOMDP M =
(S, A,Ω, T, R,O), whereS, A andΩ are the (finite) set
of states, actions and observations (respectively);T is the
transition probability:T (s, a, s′) is the probability of mov-
ing to states′ if we execute actiona in states; R is the
reward function:R(s, a) is the (expected) reward for exe-
cuting actiona in states; andO is the observation prob-
ability: O(a, s′, o) is the probability of observingo ∈ Ω
when an execution of actiona leads to states′. In this sec-
tion, we assume that the observation probabilities ofM do
not depend on the last action executed, and we denote by
O(s′, o) the (well defined) probability of observingo ∈ Ω
when arriving ins′ ∈ S. We relax this assumption in Sec-
tion 3.3. If M is a fully-observableMDP, thenΩ = S and
O(s′, s′) = 1 for all s′ ∈ S.

The problem we tackle is this section is the following:
givenM , H, and a probability distribution over the initial
statex0(s) (the initial belief), find the best contingent plan
where there are (at most)k branch points in each possible
trajectory through the plan. The optimality criterion used
is the classical expected cumulative reward (discounted or
not) up to the planning horizonH:

E

[
H∑

t=1

γtr(t) | x0

]
,

r(t) is the reward received at timet andγ ∈ [0, 1] is the
discount factor.

First, we assume that we must create one branch for each
observation that can be made at each branch point (so, the
branch points are|O|-ary in a POMDP, and |S|-ary in an
MDP). We show how to relax this constraint in Section 3.2.

2.1 CONFORMANT PLANNING

Whenk = 0, the problem is that of conformant planning:
we must find the best unconditional sequence ofH ac-
tions. As Hyafil and Bacchus [9], we model the stochas-
tic conformant planning problem as a completely non ob-
servableMDP (NOMDP) M0 = (S0, A0,Ω0, T 0, R0, O0)

where S0 = S; A0 = A; Ω0 contains only one ele-
ment,o∅, that basically says“I can’t see anything infor-
mative”; T 0(s, a, s′) = T (s, a, s′), R0(s, a) = R(s, a),
andO0(a, s′, o∅) = 1 for all (s, a, s′) ∈ S ×A× S.

As for anyPOMDP [10], the optimal solution ofM0 over
the finite horizonH can be determined in finite time using
value iteration(VI), which is a form of dynamic program-
ming (DP). Starting from the planning horizonH, we pro-
ceed backward through time to construct a value function
V 0

t for eacht ∈ {0; 1; . . .H}. The valueV 0
t (x) represents

the expected reward we get by executing an optimal confor-
mant plan for the starting beliefx over the planning horizon
t. In the particular case of theNOMDP M0, the equations
of VI are the following (the superscript 0 of theV andQ
functions is a reference tok, the number of branch points
in the plan):

V 0
H(x) = 0 , (1)

and, for allt ∈ {0, 1, . . . H − 1}:

V 0
t (x) = max

a∈A

[
Q0

t (x, a)
]

, (2)

Q0
t (x, a) =

(∑
s∈S

x(s)R(s, a)

)
+ γV 0

t+1(Ba
o∅(x)) . (3)

Ba
o∅

(x) represents the belief posterior to actiona and ob-
servationo∅, given the prior beliefx. It is given by Bayes’
rule:

Ba
o∅(x)(s′) =

∑
s∈S x(s)T (s, a, s′)

Z
. (4)

Since we do not make any observation at all, whether the
original processM is a POMDP or anMDP does not influ-
ence in any way the optimal solution of conformant plan-
ning. Note that the observation setΩ and the observation
functionO are not used anywhere in the equations above.

Practical implementations ofVI exploit the fact that the
value function is always a piecewise linear convex func-
tion of the beliefx. The functionsV 0

t (·) andQ0
t (·, a) are

represented as finite sets ofα-vectors, each of them corre-
sponding to a linear function ofx. V 0

t andQ0
t are then de-

fined as the supremum (max) of the set of linear functions
that represent them. All operations in equations (2) and (3)
reduce to manipulation and production ofα-vectors. The
sets ofα-vectors are regularly purged of vectors represent-
ing linear functions that are optimal nowhere in the belief
space. Many algorithms differ only in the way they purge
sets ofα-vectors. Although the belief space is continuous,
all the computation is finite [10, 6].

The value function constructed when solvingM0 up to the
planning horizonH contains the expected reward of the
best conformant plan in each possible initial belief state,
and for each planning horizon less than or equal toH. To
get the optimal plan for a particular starting beliefx0 (for
instance, the certainty of being in a given state) and horizon

H, we must simulate a trajectory by always executing the
optimal action for the current belief state, which requires
monitoring the belief state along the trajectory using equa-
tion (4). Since there is only one possible observation at
each step, there is always only one possible belief at the
next step. So, the trajectory can never branch.1 We could
as easily extract the optimal conformant plan for another
starting belief and/or another planning horizonh < H. All
the information that is important and hard to calculate is in
the value function, which is computed only once. InOKP,
we do not need to extract any plan before having reached
the levelk where we decide to stop.

2.2 1-CONTINGENCY PLANNING

Similarly, the optimal 1-contingency plan is the optimal so-
lution of aPOMDPM1 = (S1, A1,Ω1, T 1, R1, O1). M1 is
constructed by duplicatingM0 and adding anobserve-and-
branchaction between the two copies ofM0. Thus, each
states ∈ S of the originalPOMDPM is represented twice
in M1. One copy represents being ins before the plan has
branched, and the other represents being ins after the plan
has branched. The observe-and-branch action induces an
irreversible transition from states of the first type to states
of the second type. As fork = 0, the problem is completely
non-observable, except that the observe-and-branch action
allows making an ordinary observation as specified in the
original POMDP M , and conditioning the next actions on
this observation. IfM is an MDP, then the observe-and-
branch action sees the current state exactly. Formally:

States: S1 = S × {0, 1}. The pair(s, k), s ∈ S and
k ∈ {0, 1} , represents being ins and having possibility of
using the observe-and-branch actionk times in the future.
Each(s, 0) may be seen as an element ofS0, the state space
of the conformant planningNOMDP M0.

Belief states: The number of branch points that are still
available for the future,k, is always known with certainty.
All the uncertainty on the state(s, k) of M1 comes from
the uncertainty ons. Therefore, a belief state forM1 is a
pair (x, k) wherex is a probability distribution overS and
k ∈ {0, 1}.

Actions: A1 = A∪ {aob}, whereaob is the observe-and-
branch action.aob is executable only in states(s, 1), s ∈
S. aob is a specialinstantaneousaction: executing it does
not increment time. As shown below, it can be used only

1It is also possible to simulate trajectories by following point-
ers fromα-vectors at timet to α-vectors at timet + 1 established
when solvingM0, instead of maintaining the current belief. How-
ever, this technique appeared to be much slower in the context of
OKP with k > 0, because it does not allownot building a branch
for observations that are impossiblegiven the current beliefdur-
ing plan extraction.

once in each trajectory. The other actionsa ∈ A are called
ordinaryactions.

Observations: Formally, Ω1 = Ω. However, useful
observations can be made only through the observe-and-
branch actionaob. All other actions provide a non informa-
tive observation. To model this, we select arbitrarily one
observation of the original process, we rename ito∅, and
we use it to represent the non-informative observation pro-
duced by all actions different fromaob. Observed after an
ordinary actiona ∈ A, o∅ means“I can’t see anything in-
teresting”, and when it is observed afteraob, it has the same
semantics as in the original processM .

Effects of ordinary actions: The states(s, 0), s ∈ S,
represent an absorbing subset, that is, we cannot get out
of this subset once we enter it (remember that only or-
dinary actions are possible in such states). All the tran-
sition probabilities, rewards and observation probabilities
involving only such states are defined as inM0. The
only way to get out from states of type(s, 1), s ∈ S,
is through the observe-and-branch action. The transi-
tion probabilities, reward and observations involving only
states of the type(s, 1), s ∈ S, and not the observe-
and-branch actionaob, are also defined exactly as the
transitions, rewards, and observations inM0. That is:
T 1((s, k), a, (s′, k)) = T (s, a, s′), R1((s, k), a, (s′, k)) =
R(s, a, s′), andO1(a, (s′, k), o∅) = 1, for all (s, k, a, s′) ∈
S × {0; 1} ×A× S.

Effect of the observe-and-branch action: executing ac-
tion aob in state(s, 1) leads with certainty to state(s, 0),
with the same number of time-steps to go. This action pro-
vides no reward and produces an observation following the
observation probability of the originalPOMDP. Formally:
T 1((s, 1), aob, (s, 0)) = 1, R1((s, 1), aob, (s, 0)) = 0, and
O1(aob, (s, 0), o) = O(s, o), for all (s, o) ∈ S × Ω.

The fact that the observe-and-branch action is instanta-
neous might make the solution ofM1 with VI look a little
bit complicateda priori. However, it turns out that opti-
mization over a finite horizon is straightforward. First, for
all x and allt ≤ H, the value of belief state(x, 0) at timet
in M1 is equal toV 0

t (x) in M0. In other words, the result
of the computation at level 0 (equations (1) through (3))
can be reused as is, it gives the value of each belief state
(x, 0) of M1 at all t ∈ {0, 1, . . . H}. Then, if we denote by
V 1

t (x) the value at timet of belief (x, 1) in M1, thenVI is
summarized by the following equations:

V 1
H(x) = 0 , (5)

and, for allt ∈ {0, 1, . . . H − 1}:

V 1
t (x) = max

{
Q1

t (x, aob),max
a∈A

[
Q1

t (x, a)
]}

, (6)

with

Q1
t (x, a) =

(∑
s∈S

x(s)R(s, a)

)
+ γV 1

t+1(Ba
o∅(x)) (7)

for all a ∈ A (using equation (4) to calculateBa
o∅

(x)), and

Q1
t (x, aob) =

∑
o∈Ω

Q1
t (x, aob, o) , (8)

Q1
t (x, aob, o) =

∑
s∈S

x(s)O(s, o)V 0
t (Baob

o (x)) , (9)

whereBaob

o (x) is the posterior belief after observingo,
given by Bayes’rule:

Baob

o (x)(s′) =
x(s′)O(s′, o)

Z
. (10)

Note that if the original problem is anMDP, then equations
(8) through (9) simplify as:

Q1
t (x, aob) =

∑
s∈S

x(s)V 0
t (xs) , (11)

where beliefxs gives states with probability 1.

So, a practical solution ofM1 requires (i) having solved
M0 in advance; and (ii) one (backward) pass ofVI through
states(s, 1), s ∈ S, following equations (5) to (11). During
the calculation ofV 1, we readα-vectors in the solution of
M0 to evaluate the observe-and-branch actions. Once the
value functionV 1 is calculated, we can extract the optimal
1-contingency plan for a given initial beliefx0 by simulat-
ing a trajectory inM1. As long as the observe-and-branch
action is not used, the trajectory may never branch. If at
some point theQ-valuesQ1

t indicate thataob is the opti-
mal action for the current belief state, then a branch point
is added to the plan. We must then calculate the poste-
rior belief for each observationo ∈ Ω using equation (10)
(that is, for each states ∈ S if M is an MDP). Finally,
the optimal branch for eacho is constructed by simulat-
ing a (non-branching) trajectory inM0. Becauseaob is
not present inM0, no more branch points can be added.
Note that it may happen that the observe-and-branch action
is never used during the travel throughM1. It shows that
there exists a conformant plan that is at least as good as
the best 1-contingency plan, so there is no need to use an
observe-and branch action. Note also that, one more time,
the optimal solution ofM1 contains the value of the best
k-contingency plan for allk ∈ {0, 1}, all possible initial
beliefsx0, and all planning horizons less than or equal to
H.

2.3 BALANCED k-CONTINGENCY PLANNING

In general, thek-contingency planning problem (k ≥ 2)
may be modelled as aPOMDPMk built onMk−1 by adding

a copy ofS0 connected to the(k − 1)th level of Mk−1

by the observe-and-branch action. All the equations of the
previous section can be re-used by replacing superscript 1
by k and superscript 0 byk − 1. That is:

V k
H(x) = 0 , (12)

V k
t (x) = max

{
Qk

t (x, aob),max
a∈A

[
Qk

t (x, a)
]}

, (13)

Qk
t (x, a) =

(∑
s∈S

x(s)R(s, a)

)
+γV k

t+1(Ba
o∅(x)) , (14)

Qk
t (x, aob) =

∑
o∈Ω

Qk
t (x, aob, o) , (15)

Qk
t (x, aob, o) =

∑
s∈S

x(s)O(s, o)V k−1
t (Baob

o (x)) . (16)

If the solution ofMk−1 is known, then the solution ofMk

requires only one pass ofVI through states at levelk (that
is, states(s, k), s ∈ S), readingα-vectors inV k−1

t to eval-
uate the observe-and-branch action. Once the value func-
tionsV k

t are determined, we can easily extract the best (bal-
anced)k-contingency plan for a given initial belief by sim-
ulating a trajectory inMk. When the observe-and-branch
action is used, the trajectory branches and one branch for
each possible observationo ∈ Ω must be built by simulat-
ing a trajectory inMk−1. This is why the algorithm pro-
ducesbalancedcontingency plans: at each branch point
at level l ≤ k, each exiting branch(which is in fact a
tree) may contain up tol− 1 branch points (equation (16)).
Therefore, each trajectory through the plan tree may tra-
verse up tok branch points. As previously, the algorithm
does not have to use all the branch points allowed if there is
no utility to be gained by doing so. Therefore, the version
of OKP presented in this section produces an optimal plan
with at mostk branch points in each trajectory.2

3 EXTENSIONS

OKP may easily be adapted to other variants of the limited
contingency planning problem.

3.1 TYPES OF PLANS

First, the algorithm can search for other types of plans.
For instance, we can search for the optimal lineark-
contingency plan as defined in Section 1.1, that is, the
best plan with (at most)k branch points, all of them on

2Note that the plan extraction phase of this version ofOKP is
exponential ink. This is an artifact due to the particular variant of
the problem addressed. What we call a “balancedk-contingency”
plan contains in fact a number of branch points exponential ink.
Therefore, extracting such a plan from the solution of thePOMDP
is exponential ink. This is not the case for the other variants of
the algorithm presented in Section 3.1.

one trajectory through the plan. In this case, each level
l ∈ {1, 2, . . . k} of Mk contains|Ω| observe-and-branch
actions,{aob

o , o ∈ Ω}. The semantics ofaob
o is “observe,

branch, and use thel − 1 remaining branch points in the
branch associated with observationo”. Equation (13) be-
comes

V k
t (x) = max

{
max
o∈Ω

[
Qk

t (x, aob
o)
]
,max

a∈A

[
Qk

t (x, a)
]}

,

where

Qk
t (x, aob

o) = Qk−1
t (x, aob

o , o) +
∑

o′∈Ω\{o}

Q0
t (x, aob

o , o′) .

Similarly, we can tackle the generalk-contingency plan-
ning problem (at mostk branches over the whole plan with-
out any other constraint), by adding multiple observe-and-
branch actions at each level ofMk. Here we must model
one observe-and-branch action for each possible way to
distribute thek − 1 remaining branch points in the|Ω| ex-
iting branches. Therefore, the number of different observe-
and-branch actions required at levelk is

(|Ω|+ k − 2)!
(|Ω| − 1)!(k − 1)!

.

So this variant ofOKP is somewhat impractical for large
k. As shown below, a way to limit the complexity of the
algorithm is to change the branch conditions.

3.2 BRANCH CONDITIONS

The algorithm of Section 2 creates one particular branch
for each observationo ∈ Ω that can possibly be made after
the observe-and-branch action (although it considers only
the observations that are possible given the current belief
during plan extraction). In other words, there may be up to
|Ω| branches stemming from each branch point of the plan.
In some variants of the limited contingency planning prob-
lem, we may want to limit the number of branches exiting
from each branch point by grouping several observations
together.

OKP can be adapted to any kind of branch condition. For
instance, if we want the plan to use binary branch points,
then we must create one observe-and-branch actionaob

Ω′ for
each possible way to partition the observation setΩ into
two non-empty subsetsΩ′ andΩ \ Ω′. Equation (13) be-
comes

V k
t (x) = max

{
max
Ω′

[
Qk

t (x, aob
Ω′)
]
,max

a∈A

[
Qk

t (x, a)
]}

,

Qk
t (x, aob

Ω′) = Qk
t (x, aob

Ω′ ,Ω′) + Qk
t (x, aob

Ω′ ,Ω \ Ω′) ,

where

Qk
t (x, aob

Ω′ ,Ω′) = Pr(Ω′ | x)V k−1
t (Baob

Ω′
Ω′ (x)) ,

Pr(Ω′ | x) =
∑
s∈S

x(s)
∑
o∈Ω′

O(s, o) ,

Baob
Ω′

Ω′ (x)(s′) =
x(s′)

∑
o∈Ω′ O(s′, o)
Z

,

and similarly forQk
t (x, aob

Ω′ ,Ω \ Ω′). Note that there are
2|Ω| − 2 such actions (subsetsΩ′), which is a considerable
number in most cases.

The equations above correspond to balancedk-contingency
planning. If we are looking for other types of plans, then
we must create a different observe-and-branch action for
each possible branch conditionand each possible way of
distributing the remaining branch points in the stemming
branches. However, the number of ways of distributing
branch points is greatly reduced (compared to the formulas
of Section 3.1) when we use compact branch conditions.
For instance, if we look for the optimal plan with at most
k binary branch points overall, then there are2|Ω| − 2 dif-
ferent branch conditions, but onlyk ways to distribute the
k − 1 remaining branch points in the two exiting branches.
Therefore, the total number of observe-and-branch actions
at levelk is (2|Ω| − 2)k.

The computational price of compact branch conditions can
be greatly reduced in the particular case where the obser-
vation o represents a numerical value.3 In this case, we
can focus the search on a particular kind of branch condi-
tion based on threshold. Each branch point is defined by
a thresholdoT ∈ O. There are two exiting branches: one
corresponds to observing a valueo ∈ O less than or equal
to oT , and the other corresponds to values greater than
oT . Thus, the total number of different branch conditions
is |Ω| − 1. As there are only two exiting branches, there
are onlyk ways to distribute the remaining branch points.
Therefore, the total number of observe-and-branch actions
at levelk of the strictk-contingency planningPOMDP is
only (|Ω| − 1)k.

3.3 GENERAL POMDPS

Finally we can relax the hypothesis on the observation
probabilities of the originalPOMDPM . In Section 2, we as-
sumed that the observation probabilities depend only on the
arrival states′ (that is,O(s′, o)), while the general formal-
ism of POMDPs assumes that they also depend on the last
action (O(a, s′, o)), which allows a richer model of sensory
actions. The problem is that, when we move to this more
general framework, the observation probabilities ofaob in
Mk, previously defined asOk(aob, (s, k−1), o) = O(s, o),
are not well defined anymore. The observation following
the use of the observe-and-branch action depends on the
action performed at the previous time step, which violates
the (first order) Markov property.

3Actually, it is not necessary that the observation is a numeri-
cal variable. It is sufficient that there be a complete order defined
over it.

One way to deal with this situation is to introduce the last
action executed into the Markov state ofMk. Another,
equivalent, way to model this is as follows: instead of
addingNk observe-and-branch actions to the preexisting
|A| actions at each levelk (whereNk is the total number of
branch conditions and ways of distributingk − 1 remain-
ing branch points in the exiting branches), we createNk

(new) copies of each actiona ∈ A. Each copy corresponds
to executinga, and then branching the plan following the
protocol of a particular observe-and-branch action. For in-
stance, in the case of balancedk-contingency planning with
|Ω|-ary branch points (as in Section 2), we duplicate each
actiona ∈ A and callã its copy (Ã is the set of all copies).
ã represents executinga, not discarding the resulting ob-
servation, and branching the plan based on this observation
following the protocol of actionaob of Section 2. The equa-
tions ofVI become:

V k
t (x) = max

{
max
a∈A

[
Qk

t (x, a)
]
,max

ã∈Ã

[
Qk

t (x, ã)
]}

,

Qk
t (x, ã) =

∑
o∈Ω

Qk
t (x, ã, o) ,

Qk
t (x, ã, o) =∑

s∈S

x(s)O(s, o)
(
R(s, a) + γV k−1

t+1 (Bã
o (x))

)
,

Bã
o (x)(s′) =

x(s′)O(a, s′, o)
Z

.

Note that we are not concerned with this issue if the original
processM is a fully observableMDP.

4 EXPERIMENTS

We implementedOKP using Cassandra’sPOMDP solver
available on the Internet.4 We used the witness algorithm
[10] to solve OKP’s multiple level POMDP. The results
presented in this paper concern the variant ofOKP that
searches for balanced contingent plans (Section 3.1), build-
ing a branch for each possible observation (Section 3.2).
We focus on two simple test bed problems.

As Hyafil and Bacchus stressed for the particular case
k = 0, OKP for generalk is able to prune the plan space
(using Bellman’s optimality principle), but it computes (the
value of) the optimal plan in every belief state at every hori-
zon, while we may be interested only in a single initial be-
lief and the belief states reachable from it. To measure the
value of this trade-off, we implemented in the same envi-
ronment asOKP, an algorithm that systematically searches
and evaluates all possible contingent plans for a givenk,
horizon, and initial belief, taking into account only reach-
able belief states. Its performance gives an indication of the

4http://www.cs.brown.edu/research/ai/pomdp/

size of the search space, and howOKP is able to prune the
search using Bellman’s optimality principle.

The first problem we used is a variant of the tiger problem
[10]. In this problem, the agent is standing in front of two
doors (left and right). Behind one door lies a dangerous
tiger, and there is a reward behind the other door. There-
fore, there are two different world states:tiger–left and
tiger–right. The initial position of the tiger is unknown,
and the initial probability on the tiger position is uniform
over the two doors. The agent has three possible actions:
opening one of the doors (open–leftandopen–right), or lis-
tening to try to guess where the tiger is (listen). The listen
action does not change the state of the world, it costs 1 unit
of utility, and provides a noisy observation that can take
two possible values:hear–tiger–leftandhear–tiger–right.
If the state of the world istiger–left, then the probability of
observinghear–tiger–leftis 0.85 and the probability of ob-
servinghear–tiger–rightis 0.15. Similarly, the probability
of hearing the tiger to the right when the tiger is actually to
the right is 0.85. Opening the door behind which the tiger
lies provides a “reward” of -10. Opening the other door
brings a reward of +6. After opening a door, the problem is
reset in its original state (that is, the agent is brought back in
front of the doors and the new position of the tiger is drawn
at random uniformly). Given these parameters, the optimal
conformant plan over a horizon ofH time-steps is tolisten
H times. At each step, it provides the reward−1 with cer-
tainty, while opening an arbitrary door (we are not allowed
to condition the choice of the door on the result of previous
listenactions) brings the expected reward: 0.5 (-10) + 0.5
(6) = -2. The discount factor is set to 1 (no discount).

We ran OKP and plan enumeration on the tiger problem
for different planning horizonsH and levelsk. Fig. 1
shows the optimal contingent plans obtained with a sam-
ple of small values forH andk. Fig. 2 shows the evolution
of the value of the optimal contingent plan as a function
of k andH. Finally, Fig. 3 shows the evolution of the to-
tal time taken by the algorithm as a function ofk andH.
These results clearly show the exponential blow-up of the
search space and howOKP is able to resist it by efficiently
pruning the search. In this example, Bellman’s optimality
principle allows a drastic reduction in the complexity of the
search that largely compensates for the fact that we have to
deal with (belief) states that are unreachable.

The second problem is a small maze world due to
Horstmann and Zilberstein [8] and represented in Fig. 4.
In this problem, the agent starts from the location marked
with an S and must end-up in the goal location G. The agent
can use 4 actions, N, S, E and W, that allow it to move 1 or
2 positions in the desired direction with equal probability
(unless a wall blocks the way). The goal state is absorbing.
The observation available (when we decide to branch) is
the presence or absence of a wall on each side of the square
that defines the agent’s location. Thus, there are 8 different

 = 2:H = 1, k

hear−tiger−left

hear−tiger−right

open−left

listen

open−right
(value = 2.6, user time = 0.0s)

 user time = 0.0s)

(value = 1.6,

open−left

open−right

listen

listen

listen

hear−tiger−right

hear−tiger−left

 = 1, k H = 3:

 user time = 0.1s)

(value = 1.855,

listen

listen

open−left

open−right

hear−tiger−right

hear−tiger−left

hear−tiger−left

hear−tiger−right

hear−tiger−right

hear−tiger−left
listen

listen

listen

k = 2, H = 3:

(value = 5.2, user time = 0.1s)

hear−tiger−left
open−left

open−right
hear−tiger−right

open−left

open−right

hear−tiger−left

hear−tiger−right

listen

listen

open−right

listen

open−left

 = 4:H = 2, k

hear−tiger−left

hear−tiger−right

Figure 1: Optimal contingent plans for the tiger problem.

possible observations (and 11 states). The agent gets a zero
reward at every step except when it enters the goal state.
Therefore, there is no time pressure on the agent: it does
not get a bigger reward for getting to the goal earlier, and it
must simply maximize its probability of reaching the goal
inside of the planning horizon. Fig. 4 contains an example
of an optimal contingent plan for this problem. Fig. 5 and
6 show the evolution of the value of the optimal plan and of
the execution time of the two algorithms on this problem.
As for the previous example, the trade-off adopted byOKP

is highly valuable.

Finally, we experimented on the GRID-10X10 problem de-
signed by Hayfil and Bacchus [9] to show the limits of the
POMDP approach to conformant planning. This problem
is constituted of an empty 10X10 square room. The goal
state is a corner of the room and the start state state is a
fixed location in the middle of the room. The four actions
available, N, S, E, and W, allow the agent to move of one
position in the grid, but there is noise in the direction of
this move. The actions N and S move the agent in the des-
ignated direction with probability 0.9, and to the West and
East directions with probability 0.05 each. Similarly, the
E and W action succeed with probability 0.8 and move the

-15

-10

-5

0

5

10

15

2 4 6 8 10 12

B
es

t p
la

n
va

lu
e

Planning horizon

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

Figure 2: Value of the optimal contingent plans of the tiger
problem.

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45 50

U
se

r
tim

e
(s

)

Planning horizon

OKP, k = 0
OKP, k = 1
OKP, k = 5

OKP, k = 10
plan enum, k = 0
plan enum, k = 1
plan enum, k = 2

plan enum, k = 10

Figure 3: Execution time ofOKP and plan enumeration in
the tiger problem.

agent to the North and South with probability 0.1. As in
Horstmann and Zilberstein’s maze, the agent can perceive
only nearby walls. The algorithms execution time for this
problem is presented in Figure 7. These results are consis-
tent with Hyafil and Bacchus’s. They show that the plan
enumeration technique is faster thanOKP in this particu-
lar problem. This may be explained by observing that, for
small values of the planning horizon, there are much less
reachable states than the total number of states. Therefore,
the reachability analysis of the plan enumeration algorithm
allows saving more time than Bellman’s optimality princi-
ple buys us in OKP. It suggest that the best algorithms will
be obtained by combining reachability analysis and Bell-
man’s optimality principle.

5 RELATED WORK

A number of probabilistic contingency planning systems
have been developed that can deal with partial observabil-

S

G

S, E, S

N, E, S, E ,S, S

E, N, W, S, S, S

E, S, E, S, W, S

S, S, S, S ,S, S

Figure 4: Horstmann and Zilberstein’s maze problem and
the optimal contingent plan fork = 1 andH = 9.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

B
es

t p
la

n
va

lu
e

Planning horizon

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

k = 10

Figure 5: Value of the optimal contingent plans in
Horstmann and Zilberstein’s maze.

ity, including C-Buridan [7],DTPOP [14], Mahinur [13],
P-Graphplan [3],C-MAXPLAN [12], ZANDER [12], and
heuristic search through the belief space [4, 2]. Since the
limited contingency planning problem may be modelled as
a POMDP, all of them can potentially be applied to this
problem. In a sense, the contribution of this paper is to
show how to cast the limited contingency planning prob-
lem as a problem of planning with partial observability. Not
all of these systems attempt to maximize the expected re-
ward. For instance, the objective for many of them is to
find a plan with a success probability exceeding a given
threshold. They can potentially be used to find a limited
contingency plan that succeeds with a minimum probabil-
ity. Also, by raising the probability threshold, one could
in theory force any of these systems to continue searching
for an optimal plan or policy. We believe that it should be
relatively easy to do this for the partial-order planners C-
Buridan [7],DTPOP[14], and Mahinur [13]. For these sys-
tems, all that would be required is to incorporate a counter
into the planning algorithm so that no more thank branches
could be added to the plan. ForC-MAXPLAN [12] andZAN-
DER [12] one could write exclusion axioms that prohibit
more thank observation axioms from appearing in the plan.
However, if there aren possible observations,

(
n

k+1

)
exclu-

sion axioms would be required. Finally, heuristic search
through the belief space [4, 2] can be applied directly to the
POMDP Mk of k-contingency planning. It amounts to in-

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45 50

U
se

r
tim

e
(s

)

Planning horizon

OKP, k = 0
OKP, k = 1
OKP, k = 2

OKP, k = 10
plan enum, k = 0
plan enum, k = 1
plan enum, k = 2

plan enum, k = 10

Figure 6: Execution time ofOKP and plan enumeration in
Horstmann and Zilberstein’s maze.

1

10

100

1000

0 2 4 6 8 10 12

U
se

r
tim

e
(s

)

Planning horizon

OKP, k = 0
OKP, k = 1
OKP, k = 2

plan enum, k = 0
plan enum, k = 1
plan enum, k = 2

Figure 7: Execution time ofOKP and plan enumeration in
the GRID-10X10 problem.

troducing the number of branch points remaining as a fully
observable component of the state.

6 CONCLUSIONS

We presentedOKP, a new algorithm that is able to find opti-
mal solutions to a variety ofk-contingency planning prob-
lems. The basic principle ofOKP is to recognize that the
belief state borrowed fromPOMDPs contains all the infor-
mation necessary to allow aDP solution to limited contin-
gency planning. We have shown experimentally that the
time gained by pruning the plan space using Bellman’s op-
timality principle may largely compensates for the fact that
we have to deal with (belief) states that are unreachable,
but that this trade-off is not be beneficial in all cases. This
work, as well as some recent work on conformant plan-
ning, shows that Bellman’s optimality principle is a pow-
erful tool for manyoptimal planning problems (where we
have to find the best plan over a set plans), not just search-

ing for the optimal policy. By showing how to cast the lim-
ited contingency planning problem as a problem of plan-
ning with partial observability, this work allows the appli-
cation of many previous algorithms to limited contingency
planning.

Acknowledgments

We thank Richard Dearden and Sailesh Ramakrishnan for
comments on the material, and Rich Washington for helpful
feedback on the paper. This work was supported by the
NASA Intelligent Systems Program.

References

[1] P. Bertoli, A. Cimatti, and M. Roveri. Heuristic search
+ symbolic model checking = efficient conformant
planning. InProceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence,
2001.

[2] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso.
Planning in mondeterministic domains under partial
observability via symbolic model checking. InPro-
ceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence, 2001.

[3] A. Blum and J. Langford. Probabilistic planning in
the Graphplan framework. InProceedings of the Fifth
European Conference on Planning, 1999.

[4] B. Bonet and H. Geffner. Planning with incomplete
information as heuristic search in belief space. InPro-
ceedings of the Fifth International Conference on Ar-
tificial Intelligence Planning and Scheduling, pages
52–61, 2000.

[5] J. Bresina, R. Dearden, N. Meuleau, S. Ramakrish-
nan, D. Smith, and R. Washington. Planning un-
der continuous time and resource uncertainty: A
challenge for AI. InProceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence,
2002.

[6] A.R. Cassandra, M.L. Littman, and N.L. Zhang. In-
cremental Pruning: A simple, fast, exact method
for partially observable Markov decision processes.
In Proceedings of the Thirteenth Conference on Un-
certainty in Artificial Intelligence, pages 54–61, San
Francisco, CA, 1997. Morgan Kaufmann.

[7] D. Draper, S. Hanks, and D. Weld. Probabilistic plan-
ning with information gathering and contingent exe-
cution. In Proceedings of the Second International
Conference on Artificial Intelligence Planning and
Scheduling, pages 31–36, 1994.

[8] M. Horstmann and S. Zilberstein. Automated genera-
tion of understandable contingency plans. InICAPS-
03: Proceedings of the Workshop on Planning under
Uncertainty and Incomplete Information, 2003.

[9] N. Hyafil and F. Bacchus. Conformant probabilistic
planning via CSPs. InProceedings of the Thirteenth
International Conference on Automated Planning and
Scheduling, 2003. To appear.

[10] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra.
Planning and acting in partially observable stochastic
domains.Artificial Intelligence, 101:99–134, 1998.

[11] M. Littman, J. Goldsmith, and M. Mundhenk. The
computational complexity of probabilistic planning.
Journal of AI Research, 9:1–36, 1998.

[12] S. Majercik and M. Littman. Contingent planning un-
der uncertainty via stochastic satisfiability. InPro-
ceedings of the Sixteenth National Conference on Ar-
tificial Intelligence, 1999.

[13] N. Onder and M. Pollack. Conditional, probabilistic
planning: A unifying algorithm and effective search
control mechanisms. InProceedings of the Sixteenth
National Conference on Artificial Intelligence, pages
577–584, 1999.

[14] M. Peot. Decision-Theoretic Planning. PhD the-
sis, Dept. of Engineering-Economic Systems, Stan-
ford University, 1998.

[15] M.L. Puterman. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley, New
York, NY, 1994.

